
Political Science 209 - Fall 2018

Prediction

Florian Hollenbach

9th October 2018



In-class Exercise Measurement

Carvalho, Leandro S., Meier, Stephen, and Wang, Stephanie W.
(2016). “Poverty and economic decision-making: Evidence from
changes in financial resources at payday.” American Economic
Review, Vol. 106, No. 2, pp. 260-284.

Florian Hollenbach 1



In-class Exercise Measurement

Do changes in one’s financial circumstances affect one’s
decision-making process and cognitive capacity? In an experimental
study, researchers randomly selected a group of US respondents to
be surveyed before their payday and another group to be surveyed
after their payday. Under this design, the respondents of the Before
Payday group are more likely to be financially strained than those
of the After Payday group. The researchers were interested in
investigating whether or not changes in people’s financial
circumstances affect their decision making and cognitive
performance. Other researchers have found that scarcity induce an
additional mental load that impedes cognitive capacity.
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Poverty and economic decision-making

In this study, the researchers administered a number of
decision-making and cognitive performance tasks to the Before
Payday and After Payday groups. We focus on the numerical
stroop task, which measures cognitive control. In general, taking
more time to complete this task indicates less cognitive control and
reduced cognitive ability. They also measured the amount of cash
the respondents have, the amount in their checking and saving
accounts, and the amount of money spent.

Florian Hollenbach 3



Poverty and economic decision-making

Load the poverty.csv data set.

Florian Hollenbach 4



Poverty and economic decision-making

Variables:

• treatment: Treatment conditions: Before Payday and After
Payday

• cash: Amount of cash respondent has on hand

• accts_amt Amount in checking and saving accounts

• stroop_time: Log-transformed average response time for
cognitive stroop test

• income_less20k: Binary variable: 1 if respondent earns less
than 20k a year and 0 otherwise

Look at a summary of the poverty data set to get a sense of what
its variables looks like.
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Poverty and economic decision-making

Question 1

1. Use histograms to examine the univariate distributions of the
two financial resources measures: cash and accts_amt. What
can we tell about these variables’ distributions from looking at
the histograms? Evaluate what the shape of these
distributions could imply for the authors’ experimental design.

2. Now, take the natural logarithm of these two variables and
plot the histograms of these tranformed variables. How does
the distribution look now? What are the advantages and
disadvantages of transforming the data in this way?

NOTE: Since the natural logarithm of 0 is undefined, researchers
often add a small value (in this case, we will use $1 so that
log 1 = 0) to the 0 values for the variables being transformed.
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Poverty and economic decision-making

Question 2a

Now, let’s examine the primary outcome of interest for this study–
the effect of a change in financial situation (in this case, getting
paid on payday) on economic decision-making and cognitive
performance. Begin by calculating the treatment effect for the
stroop_time variable (a log-transformed variable of the average
response time for the stroop cognitive test), using first the mean
and then the median. What does this tell you about differences in
the outcome across the two experimental conditions?
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Poverty and economic decision-making

Question 2b

Secondly, let’s look at the relationship between finanical
circumstances and the cognitive test variable. Produce two scatter
plots side by side (hint: use the par(mfrow)) before your plot
commands to place graphs side-by-side), one for each of the two
experimental conditions, showing the bivariate relationship between
your log-transformed cash variable and the amount of time it took
subjects to complete the stroop cognitive test administered in the
survey (stroop_time). Place the stroop_time variable on the
y-axis. Be sure to title your graphs to differentiate between the
Before Payday and After Payday conditions. Now do the same, for
the log-transformed accts_amt variable.
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Poverty and economic decision-making

Question 3

Now, let’s take a closer look at whether or not the Before Payday
versus After Payday treatment created measurable differences in
financial circumstances. What is the effect of payday on
participants’ financial resources? To help with interpretability, use
the original variables cash and accts_amt to calculate this effect.
Calculate both the mean and median effect. Does the measure of
central tendency you use affect your perception of the effect?
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Poverty and economic decision-making

Question 4

Compare the distributions of the Before Payday and After Payday
groups for the log-transformed cash and accts_amt variables. Use
quantile-quantile plots to do this comparison, and add a 45-degree
line in a color of your choice (not black). Briefly interpret your
results and their implications for the authors’ argument that their
study generated variation in financial resources before and after
payday. When appropriate, state which ranges of the outcome
variables you would focus on when comparing decision-making and
cognitive capacity across these two treatment conditions.
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Poverty and economic decision-making

Question 5

In class, we covered the difference-in-difference design for comparing average
treatment effects across treatment and control groups. This design can also be
used to compare average treatment effects across different ranges of a
pre-treatment variable- a variable that asks about people’s circumstances before
the treatment and thus could not be affected by the treatment. This is known
as heterogeneous treatment effects – the idea that the treatment may have
differential effects for different subpopulations. Let’s look at the pre-treatment
variable income_less20k. Calculate the treatment effect of Payday on amount
in checking and savings accounts separately for respondents earning more than
20,000 dollars a year and those earning less than 20,000 dollars. Use the original
accts_amt variable for this calculation. Then take the difference between the
effects you calculate. What does this comparison tell you about how payday
affects the amount that people have in their accounts? Are you convinced by
the authors’ main finding from Question 2 in light of your investigation of their
success in manipulating cash and account balances before and after payday?
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Prediction
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Prediction

• One important task of (social) scientists can be prediction

• Forecasting future events, e.g., conflict, unrest, elections

• Causal inference, also involves prediction, of what?

• To estimate the causal effect we are essentially predicting the
counterfactual
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Prediction
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Prediction
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Prediction

• Elections can be predicted using fundamentals

• Or we can use polls to predict results
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Prediction with polls

• We will use a nice R package called pollstR, which scrapes the
data from Huffington Post:
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Prediction with polls

library(pollstR)
chart_name <- "2016-general-election-trump-vs-clinton"
polls2016 <- pollster_charts_polls(chart_name)[["content"]]
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Prediction with polls

• Let’s calculate a variable that is days until the election

class(polls2016$end_date)
polls2016$DaysToElection <-

as.Date("2016-11-8") - polls2016$end_date

Florian Hollenbach 19



Prediction with polls

We could make a very simple plot of all the polls over time

plot(polls2016$DaysToElection, polls2016$Clinton,
xlab = "Days to the Election", ylab = "Support",
xlim = c(550, 0), ylim = c(25, 65), pch = 19,
col = "blue")

points(polls2016$DaysToElection, polls2016$Trump,
pch = 20, col = "red")
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Prediction with polls
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Plotting polls

plot(polls2016$DaysToElection, polls2016$Clinton, type = "l",
xlab = "Days to the Election", ylab = "Support",
xlim = c(550, 0), ylim = c(25, 65), pch = 19,
col = "blue")

lines(polls2016$DaysToElection, polls2016$Trump,
col = "red")
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Prediction with polls
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Prediction with polls

• Never trust a single poll

• Maybe we could smoothe the polls over time?

• Average the polls that are close to each other
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Prediction with polls

• This is called a moving average

• Average all the polls within a certain time window

• Window size determines amount of smoothing
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Creating a Moving Average

• In R, for each day, we subset the relevant polls and compute
the average

• That’s a lot of subsetting and averaging (532 days)

• Any ideas of how to do this fast?

Loops
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Loops in R

for (i in X) {
expression1
expression2
...
expressionN

}
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Loops in R

Elements of a loop:

• i: counter (can use any object name other than i)

• X: vector containing a set of ordered values the counter takes

• expression: a set of expressions that will be repeatedly
evaluated

{ }: curly braces to define the beginning and the end
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Loops in R

Simple Example:

for (i in c(1,2,3,4,5) {
print(i)

}

What does this loop do?
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Loops in R

• Indentation is important for the readability of code (Rstudio
does this automagically)

• Test Code without loop first by setting the counter to a
specific value
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Loops in R

Printing out an iteration number can be helpful for debugging:

values <- c(1, -1, 2)
results <- rep(NA, 3)
for (i in 1:3) {

cat("iteration", i, "\n")
results[i] <- log(values[i])

}
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Let’s write a practice loop

• Load state ideology data

• Subset to state of choice

• Write loop that prints the following for each year:
1. Mean Democrat Ideology
2. Mean Republican Ideology
3. Polarization
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Let’s write a practice loop

data <- subset(data, state == "TX")
for(i in unique(data$year)){

sub.set <- subset(data, year == i)
dems <- mean(sub.set$ideology_score[sub.set$party == "Democrat"])
cat("Dem ideology", i, dems, "\n")
repub <- mean(sub.set$ideology_score[sub.set$party == "Republican"])
cat("Repub ideology", i, repub, "\n")
cat("Polarization", i, (repub - dems), "\n")

}
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Loops in R

Let’s create a moving average:

• Begin by creating vector for counter & setting window size

days <- 500:26
window <- 7
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Loops in R

Create empty vectors

Clinton.pred <- Trump.pred <- rep(NA, length(days))

Now the loops:

for (i in 1:length(days)) {
week.data <-

subset(polls2016,
subset = ((DaysToElection < (days[i] + window))

& (DaysToElection >= days[i])))
Clinton.pred[i] <- mean(week.data$Clinton)
Trump.pred[i] <- mean(week.data$Trump)

}
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Loops in R

Smoothed Plot:

plot(days, Clinton.pred, type = "l", col = "blue",
xlab = "Days to the Election", ylab = "Support",
xlim = c(550, 0), ylim = c(25, 65))

lines(days, Trump.pred, col = "red")
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Smoothed Plot:
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2 week Smoothing

Clinton.pred <- Trump.pred <- rep(NA, length(days))
window <- 14

Now the loops:

for (i in 1:length(days)) {
week.data <-

subset(polls2016,
subset = ((DaysToElection < (days[i] + window))

& (DaysToElection >= days[i])))
Clinton.pred[i] <- mean(week.data$Clinton)
Trump.pred[i] <- mean(week.data$Trump)

}
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2 week Smoothing

Clinton.pred <- Trump.pred <- rep(NA, length(days))
window <- 14

Now the loops:

for (i in 1:length(days)) {
week.data <-

subset(polls2016,
subset = ((DaysToElection < (days[i] + window))

& (DaysToElection >= days[i])))
Clinton.pred[i] <- mean(week.data$Clinton)
Trump.pred[i] <- mean(week.data$Trump)

}
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2 week Smoothing

plot(days, Clinton.pred, type = "l", col = "blue",
xlab = "Days to the Election", ylab = "Support",
xlim = c(550, 0), ylim = c(25, 65))

lines(days, Trump.pred, col = "red")
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Smoothed Plot:
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Smoothed Plot:

Let’s add some explanations/legend to the plot

text(400, 50, "Clinton", col = "blue")
text(400, 40, "Trump", col = "red")
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Smoothed Plot:

Let’s add some explanations/legend to the plot

text(200, 60, "party\n conventions")
abline(v = as.Date("2016-11-8") - as.Date("2016-7-28"),

lty = "dotted", col = "blue")
abline(v = as.Date("2016-11-8") - as.Date("2016-7-21"),

lty = "dotted", col = "red")
text(50, 30, "debates")
abline(v = as.Date("2016-11-8") - as.Date("2016-9-26"),

lty = "dashed")
abline(v = as.Date("2016-11-8") - as.Date("2016-10-9"),

lty = "dashed")
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Smoothed Plot:
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Add points for actual result

plot(days, Clinton.pred, type = "l", col = "blue",
xlab = "Days to the Election", ylab = "Support",
xlim = c(550, 0), ylim = c(25, 65))

lines(days, Trump.pred, col = "red")
text(400, 50, "Clinton", col = "blue")
text(400, 40, "Trump", col = "red")
text(200, 60, "party\n conventions")
abline(v = as.Date("2016-11-8") - as.Date("2016-7-28"),

lty = "dotted", col = "blue")
abline(v = as.Date("2016-11-8") - as.Date("2016-7-21"),

lty = "dotted", col = "red")
text(50, 30, "debates")
abline(v = as.Date("2016-11-8") - as.Date("2016-9-26"),

lty = "dashed")
abline(v = as.Date("2016-11-8") - as.Date("2016-10-9"),

lty = "dashed")
points(0,46.47, col = "red", pch = 15)
points(0,48.59, col = "blue", pch = 15)
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Add points for actual result
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Prediction and Prediction Error

• Prediction Error = Result (actual outcome) - Prediction

• Mean prediction error = mean(error)

• Root mean squared error (RMS) =
√
mean(error2)

Florian Hollenbach 46



Prediction and Prediction Error

last.week.data <- subset(polls2016, subset = DaysToElection < 15)

margin <- last.week.data$Clinton - last.week.data$Trump
true_margin <- 48.59 - 46.47

pred.error <- true_margin - margin

mean.error <- mean(pred.error)

rmse <- sqrt(mean(pred.error^2))
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National Polls actually weren’t that far off

hist(margin, main = "Poll Prediction",
xlab = "Predicted Clinton’s margin of victory

(percentage points)")
abline(v = true_margin,

lty = "dotted", col = "red")

Florian Hollenbach 48



National Polls actually weren’t that far off
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National Polls actually weren’t that far off

average_error <- margin - true_margin
hist(average_error, main = "Poll Prediction Error",

xlab = "Error in Predicted Clinton’s margin of victory
(percentage points)")
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National Polls actually weren’t that far off

Poll Prediction Error
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National Polls actually weren’t that far off

“Trump outperformed his national polls by only 1 to 2 percentage
points in losing the popular vote to Clinton, making them slightly
closer to the mark than they were in 2012. Meanwhile, he beat his
polls by only 2 to 3 percentage points in the average swing state”

Nate Silver (The Real Story of 2016)[https://fivethirtyeight.
com/features/the-real-story-of-2016/]
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Classification

• Often we care about binary outcomes

• Did Trump win electoral college?

• Did civil war occur?

• Did it rain?

• Prediction of binary outcome variable = classification problem
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(Mis)Classification

• Wrong prediction → misclassification
1. true positive: correctly predicting civil war in country X at time

T
2. false positive: incorrectly predicting civil war in country X at

time T
3. true negative: correctly predicting no civil war in country X at

time T
4. false negative: incorrectly predicting no civil war in country X

at time T

• Sometimes false negatives are more (less) important: e.g., civil
war
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(Mis)Classification
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(Mis)Classification

• Be aware: the threshold at which we count a prediction as
positive matters!

• What happens to misclassifications if we lower the threshold?
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(Mis)Classification

• Lower threshold → more false positives

• Higher threshold → more false negatives

• Need to balance both!
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