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1 Introduction

Applied researchers are often interested in testing competing theories against each other.

Most often, the goal is to determine whether and how a limited number of variables are

related to a single outcome. The question in these cases is, “which of these theoreti-

cal accounts is most consistent with the data?” Or, more ambitiously, “which of these

theories is most consonant with the true data generating process (DGP)?” Despite the

ubiquity and importance of this research task, many scholars are still uncertain as to

how to proceed in these situations. The purpose of this chapter is to explain how this

analytical objective can be accomplished effectively using Bayesian model comparison,

selection, and averaging, while also highlighting the key assumptions and limitations of

these methods. This chapter’s overall purpose is to provide readers with a larger set of

tools for tackling this task and to discourage the kinds of haphazard (and often incorrect)

practices for comparing theories often seen in the literature.

There are two interlocking problems in comparing and contrasting alternative theo-

ries via standard statistical methods. First, in many cases the alternative theories are not

“nested” in a way that allows them to be tested simultaneously in a single regression

model. When this is true – and it often is – the common practice of placing all of the

variables from all of the theories into a single regression is inappropriate and can lead

researchers to incorrect conclusions. Yet, there appears to be no widely accepted frame-

work in the methods literature that allows scholars to compare non-nested models for

the purposes of theory testing.1

1See Clarke (2001) for a review of some of the many methods in this area that have been proposed.
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At the same time, researchers testing any theory need to “control for" additional co-

variates in order to rule out potential confounding factors, shrink the standard errors

for key coefficients, or improve model fit. They must also choose from among many po-

tential modeling options, including choosing functional forms, link functions, and more.

Yet, in many cases theory offers limited guidance as to which or how many potential

confounders should be included or what exact modeling strategy is most appropriate.

This leaves scholars facing the challenge of having to choose among many different

models and yet having little guidance as to how to arbitrate between them. In response,

researchers often engage in a haphazard search through a large implied model space

and report only a handful of results to readers for evaluation. Even worse, scholars may

either intentionally or unintentionally try out alternative model specifications only until

they find a result that confirms their research hypotheses – a practice that can lead to

higher false positive rates for published research (see Montgomery and Nyhan, 2010, for

additional discussion).

What criteria should scholars use when choosing between competing models or when

considering alternative modeling strategies or model configurations? In this chapter, we

present a number of tools from Bayesian statistics that allow scholars to approach these

challenges in a more principled manner. The Bayesian framework significantly facilitates

this task since the model configuration itself can be viewed as an unknown quantity to

which Bayesian reasoning can be applied. We can use the tools of Bayesian statistics

Clarke (2007) provides further improvements to the Vuong test that allows for comparison of two non-
nested models. Desmarais and Harden (2013) note that the Clarke test can be based on biased estimates
and inconsistent but suggest an alternative implementation using cross-validation. Our claim is not that
there are no methods available, only that many applied scholars appear to be very uncertain about which,
if any, method to use.
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to compare the relative evidence in favor of various models to select the “best" model,

an approach that can be loosely labeled model selection. We can also examine posterior

estimates to assess the degree to which a candidate model has adequately captured the

true data generating process, which we label model evaluation. Finally, we can take a

more agnostic approach and incorporate the uncertainty about the appropriate model

configurations directly into final estimates, or model averaging.

Below, we provide a broad overview of the tools available for model selection, evalu-

ation, and averaging with a special emphasis on theory testing. First, we briefly discuss

“traditional” approaches to model selection via Bayes factors and model fit compar-

isons. This latter category of tools includes approximations of Bayes factors as well as

criteria based on out-of-sample prediction. We then discuss the idea that no “correct”

model exists, and therefore researchers should incorporate the uncertainty about model

configuration directly into their statistical approach. Specifically, we cover Bayesian mix-

ture models, Bayesian model averaging, and the recently developed Bayesian stacking.

Throughout the chapter, although we do provide some details of the mathematics, our

focus is on providing a general intuition about these various methods along with their

relative strengths and weaknesses. Readers interested in more thorough treatments of

this subject are directed to the works cited below. All code to reproduce the models and

model selection examples we describe in this chapter will be available online.2

2Code and dat can be found on GitHub under https://github.com/fhollenbach/
BayesModelSelection.
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2 Motivating example: Testing theories of congress

As our working example throughout this chapter, we rely on Richman (2011), an article

that appeared in the American Political Science Review that seeks to test competing mod-

els of policymaking in the US Congress. Specifically, Richman (2011) tests competing

models that make predictions about which status quo policies are likely to be enacted

as the composition of the House, Senate, and Presidency shift (Brady and Volden, 1998;

Krehbiel, 1998; Cox and McCubbins, 2005). Using novel estimates of status quo locations

in different policy areas, policy changes in those areas, and the ideal points of pivotal

actors, Richman (2011) empirically tests four competing theories.3

Richman (2011) estimates predictions for where the status quo in 42 policy areas

should be according to each theory for the 103rd through 110th Congress. Richman (2011)

then estimates a simple regression for the status quo policy in issue area i at time period

t using the following formula:

yit = β1predictionit + β2inflationit + εit

The main difference across models is, therefore, how the prediction variable is calculated.

In all cases, the theory is that the β1 coefficient should be equal to 1, although the main

criteria is determining whether the coefficient is positively related to the outcome as

expected. Richman (2011) generates predictions for the status quo to be located at the

3Our specific focus here is on Table 3 in the original paper. We deviate from Richman (2011) in not
estimating panel corrected standard errors, as this sort of “correction” does not easily translate into a
Bayesian framework, and we want to present a very simple example. The brms package we use does allow
users to estimate models with autoregressive terms or other solutions to serial correlation in time and
space.

4



position of the median voter of the house (Model 1), as predicted by the pivotal politics

theory (Model 2), as predicted by the party cartel model (Cox and McCubbins, 2005)

with only negative agenda control (Model 3), and as predicted by a hybrid cartel theory

that assumes some degree of positive agenda control by party leaders (Model 4). The

only control variable considered in Richman (2011) is a measure of inflation to reflect

the natural change in status quo positions in some policy areas that result from inflation

rates. Richman (2011) calculates two versions of the inflation measure, one for models

one and two, and one for the third and fourth models. The two inflation measures differ

based on the relevant policy area according the relevant theory. Richman (2011) then

evaluates the different models based on their ability to predict the status quo based on a

linear model. Specifically, the models are ranked based on their individual R2 values.

We replicate the four models presented in Table 3 in Richman (2011) using the brms

package in R (Bürkner, 2017, In Press).4 The brms package provides users with a large

number of pre-specified Bayesian models that are then estimated in Stan using C++

(Team, 2017; Carpenter et al., 2017). Stan is a relatively young probabilistic program-

ming language, similar in spirit to WinBugs. In fact, writing model code in Stan is quite

similar to doing so in WinBug. At this point, the vast majority of Bayesian models can be

fit in Stan, and a fast growing number of R packages provide users with pre-programmed

routines for an extensive number of Bayesian models. Stan allows users to estimate mod-

els using fully Bayesian sampling via the Hamiltonian Monte Carlo (HMC) methods or

approximating posterior means and uncertainty using variational inference. The HMC

4To have the same sample in all our models, we delete three observations that have missing data on
the lagged dependent variable.
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approach to Markov chain Monte Carlo methods is particularly attractive because of its

high scalability and ability to succeed in highly dimensional spaces.5

For each of the four models described above, we estimate a standard Gaussian linear

model, where y = Xβ + ε, and ε ∼ N(0, σ). We specify Gaussian priors with mean zero

and a standard deviation of five for the regression coefficients. For the residual standard

deviation (σ), we keep the default half student t prior with three degrees of freedom

and scale parameter ten. In addition to the four models presented in Richman (2011),

we add two additional models. First, we estimate a model that includes all six possible

covariates and a lagged dependent variable. Second, we estimate the model with all

covariates and the lag DV but also add random intercepts for each congress and issue

area. For the standard deviation of the random effects, we use the same half student t

prior as above.

The median estimates and 95% credible intervals for the estimates in all six models

are shown in Table 1. There are two aspects of these results that are notable. First,

Richman (2011) correctly identifies that these competing theories cannot be tested within

a single model and does not attempt to do so. The result, however, is that we end up

with four non-nested models that must be compared against each other. To arbitrate

between them, Richman (2011) makes interpretive claims based on the overall model

fit (as assessed by R2 values). For instance, Richman (2011, p 161) states that Model

2 “dramatically improves upon the predictions that can be made” relative to Model 1.

Likewise, in comparing Model 3 and 4, he concludes that “the differences in fit between

5The intricacies behind Hamiltonian Monte Carlo go beyond the scope of this chapter; for a more
thorough introduction to Hamiltonian Monte Carlo, see Neal (2011) and Betancourt (2017).
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Table 1: Evaluating Theories of Congress: Median Estimates and 95% Credible Intervals
for Table 3 in Richman (2011) [Models 1-4] and two garbage can models

Variable Model 1 Model 2 Model 3 Model 4 Full Model Full Model & RE

lag DV 0.59 0.39
(0.38,0.8) (0.09,0.71)

Median only 0.5 0.02 -0.13
(0.07,0.93) (-0.25,0.29) (-0.61,0.24)

Pivotal politics 0.92 -0.72 -0.61
(0.66,1.17) (-1.22,-0.23) (-1.19,-0.08)

Party cartel open rule 0.89 1.1 0.81
(0.72,1.06) (0.23,1.94) (-0.16,1.84)

Party cartel closed rule 0.82 -0.4 -0.11
(0.65,0.99) (-1.1,0.34) (-0.96,0.71)

Inflation (median/pivot) 0.07 0.05 -0.01 0
(-0.1,0.25) (-0.1,0.19) (-0.11,0.09) (-0.1,0.1)

Inflation (party) 0.06 0.07 0.07 0.1
(0.02,0.1) (0.03,0.11) (0.04,0.11) (0.05,0.15)

Sigma 4.52 3.83 3.09 3.15 2.49 2.21
(3.99,5.17) (3.38,4.41) (2.74,3.54) (2.77,3.62) (2.19,2.86) (1.85,2.69)

N 117 117 117 117 117 117
Random Effects No No No No No Yes

the models is modest enough that no definitive conclusion can be drawn” (Richman,

2011, p 161). While the model fits superficially suggest that these conclusions are true,

without a formalized approach to non-nested model comparison these competing claims

cannot be formally tested. Fit statistics such as R2 are simply not designed to allow us

to say clearly that one model is better than another in a statistical sense. That is, there

is no threshold we can establish for when R2 values are "different enough" to show that

one is statistically superior to another.

Second, as in nearly always the case, the models reported in Richman (2011) are not

the only ones that were considered.

I have also analyzed the data using a wide range of assumptions, including

ordinary least squares, fixed effects by issue, random effects with and with-

out AR(1) errors, panel heteroskedastic errors with an AR(1) process, and
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dynamic GMM models without analytic weights. All analytic approaches

produced statistically significant effects in the expected direction (except for

the median model), and all produced the same relative ranking . . . (Richman,

2011, p 160).

From this description, it seems likely that these alternative specifications were tried in

response to or in anticipation of reviewer questions and serve as robustness checks for

the main model. Nonetheless, they do indicate that there are other potential model con-

figurations that were considered and could have been evaluated relative to the reported

results if appropriate criteria were available.

3 How not to test competing theories

How can we arbitrate among these competing theories? Before answering, we discuss

one approach not to take: tossing everything into a single model and examining which

coefficients are significant. As Achen (2005) shows, even in trivial models with only two

covariates, this approach will not only fail to appropriately test between theories but may

actively mislead researchers by, for example, switching the sign of key coefficients once

we have conditioned on competing (and likely correlated) concepts. In short, simply

combining variables from competing models in the hope that the results will somehow

point to the “right” theory is a deeply flawed approach to science. While under strict

conditions it can be correct,6 in a more general setting it is ill advised and conclusions

6Imagine, for instance, that we had conducted a large experiment with 12 different treatment arms.
In this case, simply tossing all of the variables into a single regression would indeed be an appropriate
way to test the effectiveness of each treatment. However, social scientists are rarely, if ever, blessed with
explanatory variables where the effects are strictly linear and co-linearity is sufficiently low to allow for
this approach to work.
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based on this approach should not be trusted.

As an example, recall that Columns 5 and 6 in Table 1 show what happens if we

simply drop all of the various predictions into a single model. Column 5 is the same

standard Gaussian model with all six predictors and a lag DV included, and Column

6 also adds congress and issue random effects. The results in this case are dramatic

and revealing about the nonsensical nature of the approach. For instance, all four of the

critical variables are hypothesized to be positive and significant. However, in the full

model several have credible intervals that now include zero. The pivotal politics variable

actually flips to become negative.7 The party cartel (with open rule) has a 95% credible

interval that excludes zero on Column 5 but includes zero once we include random

effects (Column 6). In general, we get a mishmash of results that are hard to interpret in

some cases and in others do not correspond with the theory at all.

Of course the problem here is that these coefficients have no interpretable meaning

since the key explanatory variables are deeply inter-dependent. The coefficient for the

pivotal politics variable does not reflect the independent effect of this prediction since a

change in one variable almost necessarily implies changed values in the other variables.

After all, each of the variables are functions of shared precursors (e.g., the median ideo-

logical position of the senate or the position of president). In a causal setting we might

consider them to be post-treatment (Acharya, Blackwell and Sen, 2016; Montgomery,

Nyhan and Torres, 2018), but even with observational data there is no justification for

including them all in the same model and no way to interpret the coefficients directly

7This is not a function of the lagged dependent variable being included. Without the lagged dependent
variable but all other covariates included, the estimate of the pivotal politics coefficient is −1.37 and the
95% credible interval ranges from −1.87 to −0.86.
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when we do. In general, the simultaneous inclusion of all covariates or their step-wise

selection based on p-values is ill-advised in the vast majority of settings.

4 Model selection and Bayes factors

This simplest approach to Bayesian model selection is via the construction of Bayes fac-

tors. This approach is attractive due to its simplicity, and perhaps for this same reason

was among the earliest proposed Bayesian methods for model selection. For these same

reasons we present this approach first. However, we note up front that this approach has

been extensively criticized by some authors, leading to the alternative methods discussed

below.

A (seemingly) simple way of evaluating models from a Bayesian perspective is noth-

ing more than applying Bayes rule to model probabilities (Gill, 2009). Bayes rule is sim-

ply a formalization of basic human intuition as to how we can take evidence to inform

our beliefs about the "true" state of the world:

P(B|A) =
P(A|B)P(B)

P(A)
(1)

Here, P(B) is our prior beliefs about B before any data is collected. P(A|B) is the

conditional distribution of observing A given that we have observed B, which is simply

another way of expressing the likelihood of a statistical model. Finally, P(A) is the

marginal probability of observing A.

Bayes factors attempt to apply this same logic to the problem of using observed data

to inform our beliefs about the probability in favor of a specific model. Let π(Mk) be the
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prior probability that model k is “true,” and let p(y|Mk) be the probability of observing

the data y under the assumption that k is true.8 Further, assume that we are considering

k ∈ 1, 2, . . . , K alternative model configurations. With a finite set of potential models, we

can then calculate the marginal distribution of the data as,

p(y) =
K

∑
k=1

π(Mk)p(y|Mk). (2)

Simply applying Bayes rule, we can express the posterior probability of any particular

model k as:

p(Mk|y) =
π(Mk)p(y|Mk)

∑K
k=1 π(Mk)p(y|Mk)

=
π(Mk)p(y|Mk)

p(y)
. (3)

If we then want to compare two models (a vs. b), we can construct a ratio between

the two models’ posteriors. This has the advantage that the denominators will simply

cancel out:

p(Ma|y)
p(Mb|y)

=
π(Ma)p(y|Ma)

π(Mb)p(y|Mb)
= Prior odds(Ma;Mb)× Bayes factor(Ma;Mb) (4)

Since the Bayes factor contains all of the “objective" information about the models (i.e.,

information that is separate from the model priors), this has been the traditional quani-

tity of interest. Higher values for this calculation represent evidence in favor of Ma

and smaller values represent evidence in favor of Mb. Jeffreys (1961) provided an early

attempt to set thresholds for Bayes factors where this evidence could be considered “con-

8The assumption that the true model is in the model space is not necessary for methods of model
selection discussed below.
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clusive” or merely “suggestive.” A widely accepted threshold is that a Bayes Factor of 3

is “substantial” evidence in favor of Ma and values above 10 are considered “strong.”9

The advantage of the Bayesian approach to model evaluation is that estimating a pos-

terior probability for each model allows us to talk about model selection in an intuitive

way. Unlike alternatives such as likelihood ratio tests that rely on confusing p-values

and null hypothesis testing, we can talk directly about model probabilities. Statements

like, “there is a 90% chance that this is the best model” have some possibility of making

sense. That is, we can directly assess various models and determine which one is most

supported by the data and with what degree of certainty. Moreover, the models do not

have to be nested to be comparable.

Despite these superficial advantages, however, the simplified description above ob-

scures several complexities that make the problem of model comparison and selection

difficult. To begin with, in almost all cases we are not just interested in choosing the

right model, but rather in estimating some set of model parameters θ conditioned on

our model choice and data. That is, our actual learning target is often the posterior

distribution, p(θk|y,Mk). Further, the presentation above makes implicit assumptions

about prior structures for θ that will not always hold. In more realistic settings, evaluat-

ing model fit based on Bayes factors comes with several additional difficulties that have,

in combination, worked against their widespread adoption: computational intractability,

prior sensitivity, incomplete accounting for uncertainty, and open model spaces.

9If these two models have equal prior distributions, the models are nested, and we estimate them via
maximum likelihood, then Equation 4 simply reduces to a likelihood ratio statistic.
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4.1 Marginal likelihoods

In order to construct Bayes factors, we need to be able to calculate the probability of the

data given the model after marginalizing out the model parameters. More concretely, let

θ ∈ Θ be some set of model parameters of interest, let L(θk) = p(y|θk,Mk) represent

the standard likelihood function for the data from model k, and π(θk|Mk) be the prior

distribution for θk.10 In order to calculate model probabilities or Bayes factors, we need

to marginalize out θk:

p(y|Mk) =
∫

Θ
p(y|θk,Mk)π(θk|Mk)dθ. (5)

Unfortunatley, the integral in Equation 5 is often not analytically tractable. Moreover,

even where it can be approximated with fidelity for one model, the set of models being

considered may be sufficiently large such that Equation 2 cannot be calculated in a

reasonable amount of time. Note, that in order to find the marginal distribution in

Equation 2, we would need to complete these calculations K times, and without p(y)

individual model probabilities cannot be directly calculated.

4.2 Approximations and BIC

Statisticians have developed several methods designed to approximate Equation 3 quickly.

For example, one can use Laplace’s method to approximate p(y|Mk) using the formula

10The k subscript on θ allows that each model under consideration may have a different set of parame-
ters.
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(Ando, 2010, 114):

p(y|Mk) ≈ p(y|θ̂k,Mk)π(θ̂k|Mk)×
(2π)

p
2

n
p
2 |J(θ̂)| 12

, (6)

where θ̂ is the maximum likelihood estimator (MLE), p is the number of parameters in

the model, and J(θ) = − 1
n

∂2 log L(θ)
∂θ∂θT is a function of the Hessian of the log-likelihood such

that the second term is related to the asymptotic covariance of the MLE.

This can be simplified further in instances where a large n and appropriate prior

structure allows us to ignore the prior. In such cases, Schwarz (1978) proposes a sim-

pler approximation of p(y|Mk), although subsequent work has raised questions about

whether BIC can actually be considered an approximation of any valid quantity (Gel-

man and Rubin, 1995).11 Taking the log of Equation 6 and disregarding portions that are

constant in large-n settings, we get the Bayesian information criterion (BIC)12

BIC = −2 log p(y|θ̂k) + p log n,

where we let p(y|θ̂k,Mk) = p(y|θ̂k) to simplify the notation. Likewise, we get

log BF[Ma; Mb] ≈ (BICb − BICa)/2. (7)

The advantage of using BIC is its simplicity. We can evaluate and compare models

11Despite the name, notice that BIC is primarily useful for evaluating the model fit from the MLE in
an asymptotic setting where priors are irrelevant. Further, the motivation and derivation for BIC differs
significantly from the other “information criteria” covered below.

12Note that some texts and software packages may define BIC as the negative of how we have defined
it.
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using straightforward calculations from the likelihood based on the MLE. The obvi-

ous drawback is that BIC will give inaccurate and even misleading approximations in

small sample settings or when prior structures cannot be ignored (e.g., improper pri-

ors). For example, as discussed more below, if the compared models are quite similar,

prior choices can be decisive when evaluating models using BIC or Bayes factor. Indeed,

Berger, Ghosh and Mukhopadhyay (2003) shows that even in fairly simple models, BIC

can lead to incorrect conclusions even as n → ∞.13 For these reasons, we advise that

researchers be cautious in interpreting BIC as a proper approximation of a Bayes factor

or, even better, avoid the use of BIC altogether.

4.3 Approximation via simulation and bridge sampling

Several other approaches focus on approximating marginal probabilities using meth-

ods that take advantage of the simulation methods (e.g., Markov chain Monte Carlo)

typically used to estimate posterior distributions of θk. What these methods have in

common is that they attempt to avoid the potentially high-dimensional integration prob-

lem in Equation 5 using Monte Carlo-like approximations. These estimation methods

themselves allow for estimation of a wide array of models in a Bayesian framework

including generalized linear models, hierarchical linear models, item response models,

ARIMA modes, network models, and more.

One of the simplest simulation approaches again rests on the the Laplace method.

Assume that we have s ∈ [1, 2, . . . , S] samples of θk from model k, denoted θ(s)k . We can

then approximate the posterior mode as (Ando, 2010, p. 170):

13More advanced approaches for estimating marginal model probabilities include the generalized
Bayesian information criterion (Konishi, Ando and Imoto, 2004), which allows for more informative priors.
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θ̂k ≈ max
s

{
p(θ(s)k |y)

}
= max

s

{
p(y|θ(s)k ,Mk)π(θ

(s)
k |Mk)

}
.

The posterior covariance can be approximated as:

V̂ ≈ 1
S

S

∑
s=1

{(
θ
(s)
k − θ̄k

)T (
θ
(s)
k − θ̄k

)}

where θ̄k is the posterior mean. We can then get:

p(y|Mk) ≈ p(y|θ̂k)π(θ̂)× (2π)
p
2 |V̂|.

More advanced examples of numerical approximations in the literature include re-

versible jump MCMC (Green, 1995), Chib’s method (Chib, 1995), path sampling (Gelman

and Meng, 1998), the harmonic mean estimator (Gelfand and D.K., 1994), and more.

Each of these approaches has its relative advantages and disadvantages, but all can be

technically difficult to implement and in some cases require completing difficult analyt-

ical calculations or setting up new samplers. Further, estimators that rely on evaluations

of the likelihood (e.g., the harmonic mean estimator) can be numerically unstable since

these are technically unbounded.

Perhaps the most generally useful approach within this family is bridge sampling

(Meng and Wong, 1996; Meng and Schilling, 2002), which has a fairly “black box” im-

plementation available for applied researchers (Gronau et al., 2017; Gronau, Singmann

and Wagenmakers, 2017). The basic idea is to introduce a “bridge function,” h(θ), and a

proposal distribution, ψ(θ). We can then set up the identity
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1 =

∫
Θ

h(θk)p(θk|y,Mk)ψ(θk)dθk∫
Θ

h(θk)ψ(θk)p(θk|y,Mk)dθk
=

1
p(y|Mk)

∫
Θ

h(θk)p(y|θk,Mk)π(θk|Mk)ψ(θk)dθ∫
Θ

h(θk)ψ(θk)p(θk|y,Mk)dθk

p(y|Mk) =

∫
Θ

h(θk)p(y|θk,Mk)π(θk|Mk)ψ(θ)dθk∫
Θ

h(θk)ψ(θk)p(θk|y,Mk)dθk
(8)

For the denominator in Equation 8, we can then use draws of θk to approximate the

integral numerically. Likewise, we can take draws from the proposal density ψ(θk) to

accomplish the same task in the numerator. Assuming we take L draws from ψ(·), we

can estimate Equation 5 as:

p(y|Mk) =
1
L ∑L

l=1 h(θ(l)k )p(y|θ(l)k ,Mk)π(θ
(l)
k |Mk)

1
S ∑S

s=1 h(θ(s)k )ψ(θ
(s)
k )

.

Obviously, in order to implement this model we must choose h(·) and ψ(·). Meng and

Wong (1996) provide an optimal choice for h(·) in terms of the the mean-squared error

of the estimator. For efficiency, the proposal density will ideally be as close as possible

to the posterior distribution. The bridgesampling package relies on either a multivariate

normal distribution where the mean vector and covariance matrix are calculated from

the full posterior for θ and a “warped” posterior (Meng and Schilling, 2002). For practical

reasons, however, it is often useful to calculate log {p(y|Mk)} as we do below.

Once we have have estimated p(y|Mk) for various models, we can then compare

specific models by constructing Bayes factors. Once again, when comparing models a

and b we can get,

17



BF[Ma,Mb] =
p(y|Ma)

p(y|Mb)
.

Alternatively, to maintain comparability with the BIC approach, we can calculate,

log BF[Ma,Mb] = log {p(y|Ma)} − log {p(y|Mb)} .

4.4 Prior sensitivity,M-closed assumption, and uncertainty

Perhaps the greatest limitation of Bayes factors is that the results can be very sensitive to

priors. The approach to model selection discussed above rests on theM-closed assump-

tion, meaning that we are assuming that one of the Mk ∈ M is the true model, even if

the researcher does not know which it is. Especially when this is untrue, Bayes factors

will be driven by the choice of prior distributions chosen for θ. Yao et al. (2018) provide

the following powerful example of this problem:

[C]onsider a problem where a parameter has been assigned a normal prior

distribution with center 0 and scale 10, and where its estimate is likely to be

in the range (−1, 1). The chosen prior is then essentially flat, as would also be

the case if the scale were increased to 100 or 1000. But such a change would

divide the posterior probability of the model by roughly a factor of 10 or 100.

(Yao et al., 2018, p 919)

In essence, if we were to compare two models that are exactly the same except one

has a prior over β with standard deviation 10 and the other with standard deviation

100, the Bayes factor would strongly favor the first, despite the fact that the posterior
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estimates of θ and even predictions for each observation would be essentially the same

across models. Further, placing (most) improper vague priors on θ – arguably the most

agnostic approach to model building – will lead to the Bayes factor not existing at all.

This leads to the awkward result that the ultimate decision about model quality depends

on choices we make about the prior structures on θ parameters – choices that may be

only incidental to the scientific question at hand.

A final concern is that some of these approaches to model comparisons are not “truly

Bayesian” in the sense that they rely on a single estimate of θ̂ rather than reflecting

the entire posterior. Even the approaches that leverage the full posterior over θ do so

only to marginalize the quantities away rather than truly incorporating our posterior

uncertainty into our estimates.

4.5 Example Application

Keeping these limitations in mind, we turn back to our running example. Based on the

non-sensical results when including all covariates, we from now on only compare the

four original models presented by Richman (2011). First, we calculate BIC for each of

the four models, presented in Table 2. As we can see, Model 3 has the smallest BIC

value, which would indicate the highest model fit. This is in line with the evaluation

by Richman (2011) based on the R2 values. Similarly, as with Richman’s evaluation, the

difference between the BIC values of Model 3 and 4 is very small. Nevertheless, the

BIC for Model 2 is only 50 points larger than that of Model 3. Thus, again one would

have to conclude that Model 3 seems to be slightly better than the other two models.

In the bottom part of Table 2 we show the approximate Bayes factor (on the log scale),
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calculated as in equation 7 above, for Model 3 compared to the three other models. The

results lend additional support to the idea that Model 3 is clearly better than Model 1

and 2 while only being a slight improvement compared to Model 4. On the original

scale, the Bayes factor between Model 3 and Model 4 is 9; i.e., in the language discussed

above, this could be considered “substantial” but not quite “strong” evidence in favor of

Model 3 over Model 4.

Table 2: BIC and Approximation to Bayes Factor

BIC scores

Model 1 Model 2 Model 3 Model 4
696.3 657.2 607.2 611.5

Log Bayes Factor Approximation for Model 3

M3 : M1 M3 : M2 – M3 : M4
44.4 25.0 2.2

Next we use bridge sampling, with a bridge function as in equation 8 above, to first

estimate the log marginal likelihood for the four models. We also generate estimations

of the log Bayes factor comparing Model 3 to the others. The brms package again makes

this very easy for applied users, as the estimations are integrated into the package. The

top half of Table 3 below shows the log marginal likelihood for each of the four models

as estimated via bridge sampling. Similar to previous results, the differences are largest

with respect to Models 1 and 2 compared to Models 3 and 4. The lower half of Table 3

presents the Bayes factor of M3 : Mk on the log scale. For this exercise, the approximate

Bayes factor using BIC and the estimation via bridge sampling are very similar. We note,

however, that these different approximations are likely to diverge in more complicated

settings.
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Table 3: Log Marginal Likelihood and Bayes Factor using Bridge sampling

Log Marginal Likelihood

Model 1 Model 2 Model 3 Model 4
-351.0 -332.5 -309.4 -311.5

Log Bayes Factor via Bridgesampling for Model 3

M3 : M1 M3 : M2 – M3 : M4
41.7 23.2 2.2

5 Predictive model evaluation

While model selection via Bayes factors and marginal model probabilities seems intu-

itive, as the above discussion indicates it is not always so straightforward in practice.

This is particularly true in instances where the model parameters θ take on continuous

values requiring both informative priors and marginalization to complete the calcula-

tions. In addition to the difficulty of calculating the marginal likelihoods discussed

above, Bayes factors in general are sensitive to priors on elements of θ in ways that can

be undesirable.

As an alternative to these approaches, the literature contains a number of approaches

intended to help scholars evaluate the quality of any given model based on their pre-

dictive capacity. Here we follow the presentation in Gelman et al. (2013) and Gelman,

Hwang and Vehtari (2014). The most common approaches are based on information

theory, with the goal of minimizing the Kullback-Leibler (KL) divergence between the

true (but unknown) data generating function and the predictive distribution implied by

model Mk .

Let θ̂ be our current estimate for the model parameters, p(ỹ|θ̂k,Mk) be predictions
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from model k for some new observation ỹ that were not used to fit the model, and g(·)

be the true data generating function. Rather than evaluating model fit based on in-sample

performance, the idea is that we would like to choose the model that best fits all of the

data, not just that which we have collected.

One way to summarize the predictive fit of a model is the log predictive density

(lpd), log {p(ỹ|θ)}. This quantity has the nice feature that, in the limit, the model with

the lowest KL information also has the highest lpd (Gelman, Hwang and Vehtari, 2014).

For a single point, we can define the lpd as the point prediction from that point after

marginalizing out θ,

log {p(ỹi|θk)} = log E [p(ỹi|θ)] = log
∫

Θ
p(ỹi|θk)p(θk|y,Mk)dθk.

Note that the expectation is taken over the posterior of θ, where the posterior is estimated

based on the in-sample data y.

We have to go further here, however, because the future data (ỹ) is itself unknown.

However, we can again use Bayesian reasoning to calculate the expected log predictive

density (elpd) as:

E
[

log {p(ỹi|θk,Mk)}
]
=
∫

g(ỹi) log {p(ỹi|θk,Mk)} dỹ = elpd.

In this case, the expectation is taken in terms of the unknown function g(·).

For more than one data point, we can simply sum this value to create the expected

log pointwise predictive density (elppd),
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elppd =
n

∑
i=1

E [log {p(ỹi|θk,Mk)}] . (9)

The model that scores highest on this value can be considered the “best” model in terms

of its predictive accuracy and, with large samples, optimal in terms of KL information.

However, since this quantity cannot be calculated directly, we must again turn to ap-

proximations below.

Before moving onto specific approximations, however, it is helpful to define two

additional quantities. First, if we assume some specific point estimate θ̂, we can calculate

the elpd as E
[
log
{

p(ỹi|θ̂)
}]

. Further, in this case and given standard iid assumptions,

we can simplify the notation to get

p(ỹ|θ̂) =
n

∏
i=1

p(ỹi|θ̂)

.

5.1 Information criteria

In the particular case where we use the MLE, the elpd can be approximated accurately

using the Akaike information criterion (AIC) (Ando, 2010).

AIC = −2 log L(θ̂MLE) + 2p,

where elpd ≈ −1
2 AIC. However, it is important to note that this assumes (i) we have

not included informative priors on θk, (ii) the posterior distribution for θk can be repre-
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sented as a multivariate normal, and (iii) the model is correct (the true data generating

process corresponds to some unknown member of the specified parametric family of

distributions) (Ando, 2010, p 199). Thus, while it is simple to calculate, it is probably not

applicable in many situations.

Note that AIC has two additive components, which is a feature of all of these similar

criteria. The first represents the degree to which the model fits well given the data al-

ready collected; i.e., the in-sample fit. The problem, of course, is that models that better

explain the data we have will not always be a superior representation of the underlying

DGP. Instead, more complex models – models that include more variables, interactions,

non-linearieties and the like – may simply capture random noise in the dataset, mistak-

ing it for true information. More formally, improved in-sample model fit may actually

decrease the ability of the model to explain (or predict) new observations generated by

the same process.14

Following this logic, the second term in the AIC formula is a penalty term that pun-

ishes for complexity to work against selecting models that overfit the data. Under the

assumptions stated above, the penalty term in the AIC is exact. However, when we

move beyond a world of flat priors and linear models, this penalty term will no longer

be correct (Gelman et al., 2013).

The deviance information criterion (DIC ) overcomes these issues by approaching the

problem from a more strict Bayesian perspective. Spiegelhalter et al. (2002) proposed the

following criteria:

14See Hastie, Tibshirani and Friedman (2016) for a fuller discussion of the problems of in-sample and
out-of-sample model fit. See Kung (2014) and Bagozzi and Marchetti. (2017) for recent applictions of AIC
for model selection.

24



DIC = −2 log
{

p(y|θ̂EAP)
}
+ PD

where PD is a Bayesian measure of model complexity that is based on the posterior mean

θ̂EAP and posterior covariance Var(θ). The exact penalty is

PD = 2
(

log
{

p(y|θ̂EAP)
}
−
∫

Θ
log {p(y|θ)p(θ|y)} dθ

)
.

Since the second term is simply the expected value for the log predictive distribution

where the expectation is taken over the posterior of θk, we can use Monte Carlo integra-

tion using the s = 1, . . . , S draws from the posterior,

PD(1) ≈ 2

(
log
{

p(y|θ̂EAP)
}
− 1

S

S

∑
s=1

log
{

p(y|θ(s)
})

.

An alternative approximation,

PD(2) ≈ 2Var [log {p(y|θ)}] ,

has the advantage of always providing a positive value (Gelman et al., 2013).

5.2 Model evaluation based on pointwise predictive densities

While both AIC and DIC aim to approximate (or proxy for) the out-of-sample fit, they

are subject to two criticisms. First, the models use the same training data both to fit the

model and evaluate the appropriate complexity penalty. This can bias estimates towards

models that are too complex, leading researchers to the wrong decision. Further, both
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criteria use only a single point estimate (either the MLE or the EAP) to evaluate model

fit. This means that we ignore the full posterior of the model parameters, making the

methods not “fully Bayesian” and can lead to problems, including negative estimates for

the effective number of parameters (Vehtari, Gelman and Gabry, 2017, p 1414).

From a Bayesian perspective, several other criteria are generally preferred for model

evaluation. These allow us to make use of the full posterior distribution but also avoid

the problems of prior sensitivity that plague Bayes factors discussed above. These meth-

ods are also, to differing degrees, closely related to out-of-sample performance, which

is more consonant with recent trends in model evaluations and further protects against

over-fitting. For these criteria, we move towards evaluating fit based on how well pre-

dictive densities approximate the true data generating process for individual data points.

The goal is try to evaluate each model based on its predictive accuracy, where accu-

racy is evaluated based on the predictive distribution rather than the point estimate. Let

ỹ be some set of data points we are trying to predict (either new data or a data “held

out” during fitting) and yobs be the data we are currently using to fit the model. We can

then write the posterior predictive distribution as:

p(ỹ|Mk) =
∫

Θ
p(ỹ|θk,Mk)p(θ|yobs)dθ = E

[
p(ỹ|θk,Mk)

]
.

For similar reasons as noted above, we want to evaluate the model based on some func-

tion of the logged value, log
{

p(ỹ|Mk)
}

. Using s = {1, . . . , S} draws of θk from a sam-

pler, we can approximate using Monte Carlo integration. Summing over all observations

in the held-out dataset, we then get the “computed log pointwise predictive density”
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(clppd) (Gelman et al., 2013, p. 169):

clppd =
n

∑
i=1

log

{
1
S

S

∑
s=1

p
(

ỹi|θ
(s)
k

)}
.

For a fully Bayesian treatment, we would then like to calculate the elppd shown in Equa-

tion 9. The general problem is that, since we cannot marginalize over the unknown

function g(·), we must again settle for approximations based on clppd. When clppd is

calculated within sample, we will overestimate the elppd which we then need to adjust

(similar to the penalties for AIC and DIC discussed above). Alternatively, we might

rely on true out-of-sample forecasts for calculating clppd. However, this comes with the

problem of either introducing bias in the clppd as an estimate of elppd (because each

θk is estimated on a subset of the data and therefore our out-of-sample forecasts may be

biased) or imposing considerable computational requirements.

5.2.1 WAIC

The widely available information criteria (alternatively Watanabe information criterion,

or WAIC) is intended to provide a computationally friendly way of evaluating the perfor-

mance of models based on predictive distributions (Watanabe, 2010, 2013). To generate

the WAIC, we compute the clppd within the training sample and then apply a penalty

term for complexity:

WAIC =
1
n

n

∑
i=1

log {p(ỹi|Mk)} − PW .

As with DIC the trick is to find the correct penalty term PW . One approach is to let
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Pw = V/n, where V is the functional variance (Piironen and Vehtari, 2017b):

V =
n

∑
i=1

{
E[p(ỹi|θ)2]− E[p(ỹi|θ)]2

}
.

Gelman et al. (2013, Equation 7.12), however, recommend an alternative penalty equiva-

lent to the summed variance of the log predictive density of each data point:

Pw =
n

∑
i=1

VarS

[
log
{

p
(

yi|θ(s)
)}]

,

where VarS[·] is the sample variance function, and we calculate the variance across the S

draws from the posterior.15

5.2.2 Cross validation

Rather than trying to arrive at a correct penalty for complexity, another approach is cross-

validation to reduce the bias from over-fitting.16 First, the data is split into A subsets

(e.g, A = 10) of approximately equal size ( A−1
A × n). The model is then estimated on each

of the subsets and predictions are made for the observations that were held out. Once

completed A times, we now have out-of-sample predictions for each observation in the

dataset. Based on this procedure, we can define a “cross validated predictive density”

(Ando, 2010),

cvpdk =
A

∏
α=1

∫
Θ

f (yα|θ(α)k ,Mk)p(θ(α)k |y¬α,Mk).

15See Kim, Londregan and Ratkovic (2018) for a recent application of WAIC in political science.
16In most literatures this approach is referred to as “k-fold” cross validation. However, to avoid nota-

tional confusion with the model space, we do not adopt this language here.
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In this case, we “hold out” observations in partition α and calculate the posterior on θk.

Based on this distribution, we can then calculate the clppd for model evaluation.17

While relying on out-of-sample predictions does reduce the bias in our estimate of

elppd, reducing the sample size during model fitting can decrease the accuracy of the

overall model itself. When A is too small, the inherent bias in the model utility estimate

increases substantially. Generally, A between 8 and 16 has been recommended as reason-

able to trade off bias and computational cost (Vehtari and Lampinen, 2002). Of course,

estimating even a single Bayesian model, especially with large N or many parameters,

can be computationally intensive and time consuming. Cross-validation requires to re-

peatedly (A-times) estimate each of the models one is interested in comparing. When

we have many models to compare, cross-validating each can involve fitting thousands of

total models. Since this can be parallelized easily, in simple cases cross-validation may

be a good option. But even with modern computing, full cross-validation is only prac-

tical when comparing relatively few models and when each of the models is relatively

computationally inexpensive. Further, depending on the type of dataset and estimated

models (e.g., consider hierarchical data or spatial models), scholars have to give serious

consideration as to how to partition the data for analysis (and for some there may be no

clean approach to doing so).

5.2.3 LOO-CV

The extreme case of cross-validation methods is leave-one-out cross-validation (loo-cv).

Here the model is estimated n times, each time leaving out one observation in the estima-

17Note that each competing model should be fit based on the same partitioning of the data.
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tion and predicting that particular left-out observation. As in cross-validation, the pre-

dictive densities for all separately left out and predicted observations are then evaluated

using some criteria. This approach has been shown to have a number of good properties,

and, when feasible, is perhaps the best way to evaluate alternative models. Watanabe

(2010) shows that WAIC is asymptotically equivalent to the Bayesian leave-one-out cross

validation (loo-cv). Some argue that WAIC and loo-cv “give a nearly unbiased estimate

of the predictive ability of a given model”(Piironen and Vehtari, 2017a, 712). Of course,

since all models need to be estimated n times, loo-cv is likely to be too computationally

intensive for many applied researchers.

To make loo-cv computationally tractable, Gelfand, Dey and Chang (1992) and Gelfand

(1996) suggested importance sampling leave-one-out cross-validation. Effectively, we

want to avoid estimating each model n times and sampling a new θi to create a pre-

dictive distribution for each left-out observation i. To do so, we approximate θi, using

the posterior draws for θ taking into account the degree to which data point i affects

the estimate. In the original approach, the importance ratio to approximate the model

with the left out observation i would be: rs
i = 1

p(yi|θs)
(Vehtari and Lampinen, 2002; Ve-

htari, Gelman and Gabry, 2017). Thus, instead of having to estimate each model n-times,

we only generate one estimate of θ based on the whole data and then approximate the

posterior for each of the data subsets by re-weighting with the importance ratios.

This strategy, however, can be problematic under several circumstances, such as for

data with highly influential cases or high-dimensional models.18 More recently, Vehtari,

18In particular, the variance of the importance weights may be too large or infinite since the denominator
is not bounded away from zero.
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Gelman and Gabry (2017) have suggested an improvement to importance sampling for

loo-cv by smoothing the importance ratios, such that extreme values are not too influ-

ential or problematic. This is done using the Pareto distribution with its heavy tails,

i.e., “Pareto smoothed importance sampling (PSIS)” (Vehtari, Gelman and Gabry, 2017,

1413).

Specifically, psis-loo-cv smoothes the 20% largest, and therefore potentially problem-

atic, importance ratios. To do so, first a generalized Pareto distribution is fit to the largest

importance ratios. These potentially problematic ratios are then replaced with “the ex-

pected values of the order statistics of the fitted generalized Pareto distribution” (Vehtari,

Gelman and Gabry, 2017, 1415). Not only should the resulting smoothed weights per-

form better, the shape parameter of the fitted Pareto distribution can be used to check

the reliability of the new importance weights. A large estimated shape parameter of

the fitted Pareto distribution can indicate problems with the underlying distribution of

the original importance samples. In that case, the estimates from the Pareto smoothed

importance sampling may also be problematic. One immediate advantage is that one

can then identify those problematic observations. This allows scholars to then estimate

the full leave-on-out posterior for those observations that were identified as problematic.

We can then directly sample from this actual leave-one-out posterior p(θ|y−k) for those

observations. The full model evaluation would then be based on both psis-loo and full

loo estimates. Claassen (2018) has recently used loo-cv for model evaluation in political

science.

As Vehtari, Gelman and Gabry (2017) argue, psis-loo-cv has considerable computa-

tional advantages over exact leave-one-out cross-validation. It also performs better than
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WAIC, traditional importance sampling, or truncated importance sampling loo-cv on a

variety of models. For hierarchical models with few data points per group and high

variation in the parameters between groups, however, the performance of WAIC and

psis-loo decreases and exact loo-cv becomes more valuable.19

5.3 Application

We now return to our example application from above and compare the different models

in terms of WAIC, 10-fold-cross-validation, and psis-loo. The loo package in R allows

scholars to easily generate these model evaluation scores for models estimated in Stan

(Vehtari et al., 2019). Moreover, the loo package is again integrated into the brms package

and the information criteria scores are readily available for our estimated models.

The loo package produces the expected log predictive density (elpd) as well as the

information criteria on the deviance scale (i.e., −2× elpd) for all three information crite-

ria. In Table 4 below we present the different information criteria scores on the deviance

scale for the four models. First, in our simple example with 117 observations, two pa-

rameters per model, and an estimated Gaussian linear model, the values of the different

information criteria for each model are quite similar to each other. For example, for

Model 3 the WAIC score is 600.65, the psis-loo-ic score is 600.74, and the k-fold-ic score

is 604. The same is true for the other three models, where the WAIC, psis-loo-ic, and

k-fold-ic closely correspond with each other. In line with the results of the previous

information criteria presented, Model 3 performs best, i.e., has the lowest information

criteria scores.
19Similarly, for models with spatial or temporal dependence, psis-loo-cv is likely to be problematic.

Ongoing work is considering possible approaches for these cases.
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Table 4: Information Criteria for Evaluating Theories of Congress

Model 1 Model 2 Model 3 Model 4

psis-loo-ic 687.6 650.1 600.7 605.3
WAIC 687.6 650.0 600.7 605.2
k-fold-ic 688.7 650.4 600.1 603.8

Readers might wonder how to decide whether the evidence in favor of a particular

model is strong enough to make a claim about it being the best model. As mentioned

above, for the Bayes factor a value of 10 or larger would, according to some, be consid-

ered strong evidence in favor of the better model. As a first step when comparing two

models in terms of the information criteria, we can calculate the difference in their scores.

If we want to evaluate whether Model 3 should be strictly preferred to Model 1, we cal-

culate psis-loo-ic1− psis-loo-ic3 = 86.9. Since smaller values on the scores are preferable,

a negative value on the difference indicates support for the first model, whereas a pos-

itive value indicates support for the second model in the comparison. In Table 5 below

we present the psis-loo-ic scores of the individual models in the top four rows, but in

the bottom part of the table we present the calculated difference in psis-loo-ic scores

between the four different models. Recall that positive values indicate a better score for

the second model in the difference. As we can see, the second model is preferred for all

comparisons except when comparing Model 3 and 4. The difference in psis-loo-ic scores

again indicates that Model 3 performs better than Model 4. But is this difference large

enough to strictly prefer Model 3?

Fortunately, the model evaluation criteria discussed here allow us to calculate uncer-

tainty estimates, which can be used to judge whether differences between models are

large enough to draw conclusions. Each of these methods are estimated using functions
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applied to the individual observations in the data to create the information criteria; i.e.,

the total information criteria are combinations of n scores. Using the standard deviation

of those n components one can estimate an approximate standard error for the informa-

tion criteria. For example, in the case of psis-loo-cv, we can estimate a standard error

based on the standard deviation of the n individual components of the expected log

pointwise predictive density ̂elpdi,loo (Vehtari, Gelman and Gabry, 2017, p 1426). Simi-

larly, the individual components can be used to calculate an approximate standard error

for the difference in information criteria scores.

The top half of Table 5 shows the estimated êlpdloo score on the deviance scale for each

of the four models as well as the estimated standard error. In the bottom half of the table

we present the difference in psis-loo-ic scores and the standard error for each difference.

There is no clear and hard rule about how large the difference compared to its standard

error would have to be to conclude that a model is strictly superior. One might take the

general rule of thumb that we would like to see a difference that is at least the size of twice

its standard error. It has been suggested, however, that these standard error estimates

are an optimistic approximation and, especially for smaller sample sizes, might not be

appropriate (Vehtari, Gelman and Gabry, 2017). When model differences are sufficiently

small, scholars may want to prefer the less complex that provides comparable fit. Again,

both differences in information criteria and their standard errors are easily available in

the loo package and integrated into the brms package.

Based on the results presented in Table 5, we would conclude that Model 3 is signifi-

cantly better than Models 1 and 2. On the other hand, comparing Model 3 and Model 4

suggests that both do a similar job at explaining the variation in the data. That is, there
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is no strong reason to prefer one to the other.

Table 5: Loo Information Criteria for Evaluating Theories of Congress with Standard
Errors

Model psis-loo-ic SE

Model 1 687.6 17.5
Model 2 650.1 24.0
Model 3 600.7 24.1
Model 4 605.3 24.7

Differences and SEs

M1 −M2 37.6 12.2
M1 −M3 86.9 16.4
M1 −M4 82.3 16.8
M2 −M3 49.3 9.5
M2 −M4 44.7 11.0
M3 −M4 -4.6 4.4

6 Finite mixture models, Bayesian model averaging, and

stacking

In this section we turn to a somewhat different approach to handling multiple potential

models. In particular, we consider statistical approaches where each of the competing

models is considered a component of an overarching model. That is, we eschew the task

of selecting or even comparing models and instead consider how much each component

model contributes to the model combination. In the end, we may heuristically prefer the

component that contributes the most, making this distinction seem somewhat arbitrary.

However, from a statistical standpoint, the approaches we cover next can be quite distinct

from those discussed above.

Specifically, we return to the finite model space approach discussed in Section 4.20

20For reasons of space, we confine ourselves here to finite mixture models with a known number of
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From this perspective, the true data generating process is not “best” represented by any

particular model, but rather by a combination of data generating processes. We can then

engage in model selection either by choosing the model that receives the most weight

in this mixture, or we can skip the task of model selection entirely and attempt to make

inferences that actually reflect our uncertainty about the true DGP.

6.1 Mixture models

One family of models is to attempt to assign each observation to one of the potential

candidate models and estimate θk based on this assignment (Imai and Tingley, 2012;

McLachlan and Peel, 2000). Let p(yi|θk,Mk) represent the predictive distribution of

observations i from model k and let τ = [τ1, τ2, . . . , τk] index which model actually

generated each observation such that τi ∈ [1, 2, . . . , K]∀i ∈ [1, 2, . . . , n]. We can construct

our mixture model as:

p(yi|τ ,θk) ∼
K

∑
k=1

p(y|θk)I(τi = k),

where I(·) is the standard indicator function. We can then complete the model by

placing appropriate priors over θk and a hierarchical prior structure on τ ,

π(τ ) ∼ Multinomial(ω)

π(ω) ∼ Dirichlet(α).

potential components. However, we note that there is also a large literature on Bayesian models that can
relax or eliminate this assumption.
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In this case the ωi parameter represents the probability a generic observation is assigned

to each model, and we can interpret the posterior estimate in a fashion similar to (but

distinct from) the model weight shown in Equation 3. Likewise, we can look at the

posterior distributions on the τ vector to get an estimate of how many observations are

assigned to each model.

One important factor to note is that the model parameters for each component θk

are estimated for observations “assigned” to that component using standard Bayesian

methods. That is, we are imagining that all of the models are operating at the same time

but that different units belong to each (Imai and Tingley, 2012).

In many cases this can be desirable, although it can increase uncertainty for compo-

nents assigned few observations. Scholars must also be careful in how they interpret

individual parameters as the parameters do not correspond to estimates for the entire

population. Further, simultaneous estimation of model weights and model parameters

can also lead to model degeneracy and identification problems during estimation. Stan-

dard regression models can be estimated in a fully Bayesian fashion using the BayesMix

package in R or with alternative estimation routines (viz. the EM algorithm) using the

FlexMix package. However, with attention to issues of identification, they can also be fit

using brms.

6.2 EBMA

Ensemble Bayesian model averaging (EBMA), largely deriving from the literature on

forecasting, is different in that we fit component models separately using the entire

dataset and then combine them into a weighted ensemble (Raftery et al., 2005; Mont-
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gomery, Hollenbach and Ward, 2012). In this case, we can divide our dataset into three

partitions: a training set used to fit each individual model (ytrain), a calibration used

to determine the model weights (ycal), and a true test set that we are hoping to accu-

rately predict (ytest). We assume that each of the component models is fit to the training

data (although the component models need not be statistical models at all). The calibra-

tion set represents observations that were predicted out-of-sample by each component

model and allows us to appropriately weight them without having to develop penal-

ties for complexity. The goal is then to combine the forecasts in order to make accurate

predictions of the test observations.

Let wk = p(Mk|ycal), and p(ytest|Mk) represent the predictive pdf for the test set

from model k. Our goal is then to generate an ensemble prediction,

p(ytest) =
K

∑
k=1

wk p(ytest|Mk).

To complete the model, therefore, we need to estimate the model weights for each com-

ponent. Formally, we need to find the values of w that will maximize the log-likelihood

function,

L(w, Θ) =
ncal

∑
i=1

log

{
K

∑
k=1

wk p(ycal|θk)

}
,

subject to the constraint that ∑ ωk = 1, which can be calculated efficiently using an EM

in the EBMAforecast package in R.
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6.3 BMA

As the name suggests, EBMA is closely related to Bayesian model averaging (Madigan

and Raftery, 1994; Raftery, 1995; Bartels, 1997; Gill, 2004; Montgomery and Nyhan, 2010;

Cranmer et al., 2017; Plümper and Traunmüller, 2018). In the traditional approach to

BMA,21 each model is again fit to the entire dataset. Model weights are calculated

according to Equation 3.

Of course, this again leaves us with the problem of needing to estimate marginal

likelihoods. One option is to use one of the several proxies discussed above, such as

AIC or BIC. Another option is to select priors that allow for closed form solutions. For

instance, Zellner’s g-prior (Zellner, 1986) is:

π(β|σ2) ∼ Normal(0, gσ2(X′X)−1),

where X is some set of covariates and σ2 is the variance for the residuals in a standard

regression model.22 This yields a marginal model likelihood of

p(y|X,Mk) =
Γ(n/2)

πn/2 (1 + g)−pS−1,

where S is a function only of the data and the prior mean for β.23

The result is that for any quantity of interest, we can simply construct a weighted

ensemble from the full posterior. For instance, to estimate the posterior distribution of a

21For large model spaces, several scholars have developed stochastic samplers that simultaneously esti-
mate the model probabilities and model parameters (George and McCulloch, 1993).

22We also place an improper prior on σ2 of 1
σ2 .

23See Chapter 5 in Ando (2010) for a complete proof.
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specific regression coefficient, we need only calculate:

p(β|y) =
K

∑
k=1

p(Mk|y)p(βk|y,Mk) =
K

∑
k=1

wk p(βk|y,Mk).

For models where this coefficient is excluded, we will then have a point mass at zero.

The rest will create an ensemble posterior that reflects our uncertainty based on the set

of covariates. It also allows us to focus on two separate quantities of interest that are

commonly confused in interpreting regression analysis. First, we might be interested in

the posterior probability that some particular variable should be in the model. This will

be the sum of the model weights where that variable is included. Second, we might be

interested in the distribution of β conditioned on the fact that it is included in the model,

p(β|y, β 6= 0).

6.4 Stacking

BMA is based on the marginal likelihood of each model under anM-closed assumption.

Thus, there are several problems with the BMA approach that largely correspond to the

issues with Bayes factors discussed above. First, model weights can be sensitive to prior

specifications. Second, it is not always clear how to place priors on the probability

of specific models, since seemingly innocuous assumptions can also affect weights in

unintended ways. For instance, placing an agnostic prior that each coefficient has a 50%

prior probability for inclusion biases the ensemble towards models that include 50%

of the covariates. Finally, an underlying assumption of BMA is that the true model is

included within the model space (i.e., the M-closed case). When true, BMA will place
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all of its posterior weight on this one model asymptotically.

Estimating model weights in stacking is done in a very different two-step process.

First, the candidate models are estimated based on the data available. Second, model

weights are calculated for each of the estimated candidate models. In the original stack-

ing, model weights are generated by minimizing the leave-one-out mean-squared-error

for each observation based on each model’s point prediction. Ergo, stacking based only

on the point estimate and not the full predictive distribution, was not considered as a

true alternative to Bayesian model averaging (Yao et al., 2018). However, one of the ad-

vantage of stacking is its appropriateness in theM-open setting; i.e., a true model does

not have to exist, let alone be in the estimated model space.

Yao et al. (2018) built on several recent developments to further develop stacking to

use the full leave-one-out predictive distribution instead of the point estimates. Adjust-

ing the notation in Yao et al. (2018), let

p̂ki(ỹi) =
∫

Θ
p(ỹi|θk,Mk)p(θk|y,Mk)dθ.

Applying a logarithmic scoring rule,24 we can then find the stacking weights for each

model by solving the optimization problem:

max
w

1
n

n

∑
i=1

log
K

∑
k=1

wk p̂ki(ỹi).

If we adopt the psis-loo-ic approximations above, we can simplify this further to give

us weights based on estimates of the elpd, giving us stacking weights that can be con-

24We surpress discussion of alternaive scoring rules for simplicity.
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structed from a single posterior but which reflect each models’ out-of-sample proper-

ties.25

Stacking has the advantage in that it does not assume M-closed, but rather allows

that the true DGP may not be well represented by any of the candidate models. Addi-

tionally, because weights are calculated based on the unit-specific elpd for each model,

stacking takes into account when models have different strengths in predicting certain

observations. One of the advantages of stacking is, therefore, that it is able to combine

weights from models that are very similar to the better model, instead of splitting the

weight between very similar models as often occurs in BMA.26

6.5 Application

As a last example based on our application, we generate stacking model weights based

on the psis-loo-ic scores presented above. Stacking can be easily done using the loo

package (Vehtari et al., 2019) and integrated into brms (Bürkner, 2017). Once the psis-loo-

ic scores are calculated, stacking weights are readily available. Additionally, a warning

would be given if the Pareto smoothed importance sampling is questionable for some

observations and full leave-one-out resampling is then suggested for those observations.

As we can see in Table 6 below, stacking weights are highly concentrated on Model

3, even though based on the information criteria Model 3 and 4 performed quite similar

(see Table 5 above). This suggests that while BMA may have split the weight between

Models 3 and 4 due to their similar performance, stacking combines the weights to the

25This last variant is referred to as pseudo-BMA.
26Interested readers may want to consult the the original article introducing stacking via psis-loo (Yao

et al., 2018) and the full discussion appended to the article.
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slightly better model. While Model 3 may be only slightly better than Model 4, the two

models seem to be quite similar in the cases they predicted well, thus adding weight to

Model 4 beyond Model 3 must not improve predictive accuracy. The remaining weight

(0.04) is assigned to Model 1. In this case, this model is weighted poorly because it is not

as accurate as the others. However, it is still weighted more highly than Model 2 and 4

because it gives sufficiently different predictions.

Table 6: Model Weights Based on Stacking

Model 1 Model 2 Model 3 Model 4
0.04 0.00 0.96 0.00

7 Conclusion

The current state of the literature when it comes to testing competing models is deeply

unsatisfactory. In many cases the conclusions researchers draw from their analysis are

sensitive to modeling choices. Traditional null hypothesis testing strategies in particular

lead analysts to focus excessively or even exclusively on whether or not key variables

are “significant” in the models they consider. However, significance can change easily

depending on parametric assumptions, the set of covariates included, and more. In total,

in many cases competing theories are not meaningfully tested against each other, and

the conclusions we draw from our data are driven by modeling choices irrelevant or

orthogonal to the scientific question at hand. Even worse, the most common practice

we observe in the literature – simply tossing all variables from all theories into a single

regression – is known to produce incorrect and misleading conclusions. In all, we are left

with a picture that for a fundamental task for science – arbitrating between competing
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theories – standard practices are pushing researchers towards either building incorrect

garbage-can models or haphazardly exploring the potential space of models with little

guidance other than important p-values.

Throughout this chapter, we have provided researchers with a set of alternative strate-

gies for arbitrating between theories and models. The advantage of the Bayesian frame-

work in tackling this problem is that we can use the laws of probability to think clearly

about model probabilities directly. There are no null hypotheses required and no mis-

leading p-values. Instead, we can talk meaningfully about whether a given model is

better either in terms of Bayes factors or KL divergence (an optimal criteria implied by

Bayesian decision theory). While imperfect, therefore, we believe that this set of tools

offers a superior approach to arbitrating among theories than standard practices in the

discipline.

With that said, it is important to keep the limitations of these methods in mind.

In general, the appropriateness of these model evaluation techniques depends on the

specific model specification and settings in which they are used. Further, the use of in-

formation criteria or predictive accuracy for model selection, for example, should not be

a substitute for theoretical considerations of which covariates are important to include

given the question asked. Similarly, these model selection techniques are not able to

distinguish between pre- and post-treatment variables. In fact, full garbage-can models

may perform better on these scores, even though the associated results are not theoreti-

cally meaningful. Thus, as with all methodological tools, they should be used with the

necessary understanding of the actual problem being considered and theories of how

the data was generated.
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Finally, given recent advances in this area in the field of statistics, we hope that

this overview will renew attention in the field of political science to these questions.

Surely, none of the methods above represent the last word on this topic. Nor does

our presentation take into account many practical difficulties applied scholars face in

practice such as clustering, spatial correlations, time-series, confounding requiring an

identification strategy, and measurement error. Further research is needed to evaluate

the usefulness of these various methods in these circumstances.
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