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1. INTRODUCTION

In many areas of social science inquiry, hypotheses cannot be tested with randomized

treatments and laboratory-levels of control. Scholars must instead draw inferences based

on either observational data or experiments conducted with imperfect levels of compliance.

As a consequence, a great deal of attention has gone into developing methods to generate

unbiased estimates of causal effects in the presence of unmeasured confounders that

influence both outcomes and the probability of treatment. A frequent choice is applying

instrumental variables analysis to generate unbiased estimates of causal effects.

In this note, we show that Bayesian estimation methods for bivariate probit models

are superior to traditional maximum likelihood (ML) routines. Bayesian methods provide

more accurate estimates of key model parameters in realistic settings. Further, the Bayesian

approach facilitates the direct calculation of important causal quantities of interest along

with measures of uncertainty.

After presenting the bivariate probit instrumental variables model, we report results

from two studies contrasting the performance of Bayesian and ML algorithms. First, using

simulated data, we show that Bayesian bivariate probit models outperform the ML routine

in terms of bias and coverage, especially in the presence of weak instruments or small

sample sizes. Second, we compare ML and Bayesian estimates using the Sondheimer and

Green (2010) data set, which estimates the effect of educational attainment on voter turnout,

and show that the differences in estimation methods can affect substantive conclusions in

a real-world application.

2. BIVARIATE PROBIT MODELS FOR ESTIMATING CAUSAL EFFECTS

While instrumental variable (IV) models are increasingly common in political science

(c.f., Sovey and Green 2010, 194), some researchers find the standard approach—two

stage least squares—too inflexible and difficult to adjust to handle common data-types.

In particular, social scientists frequently encounter instances where both the endogenous

regressor and the outcome variable are dichotomous. In these cases, some authors have
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suggested a bivariate probit model. For instance, Angrist and Pischke (2009) argue that,

‘‘Bivariate probit probably qualifies as harmless in the sense that it’s not very complicated

and easy to get right using packaged software routines’’ (p. 201).

Indeed, bivariate probit models have appeared regularly in prominent political science

work in the past (e.g., Gerber and Green 2000; Arceneaux and Nickerson 2009), and

continue to be used regularly even in the discipline’s most prestigious journals (Maves and

Braithwaite 2013; Fuhrmann and Sechser 2014; Cederman, Hug and Wucherpfennig 2015).

Most often this is justified by the desire to appropriately handle an endogenous regressor

when both the instrument and the outcome are binary. Wucherpfennig, Hunziker and

Cederman (2016) state that, ‘‘[W]e rely on a seemingly unrelated bivariate probit estimator.

This is a framework suitable for two processes with dichotomous outcomes for which the

error terms are correlated’’ (pg. 11).

Superficially, bivariate probit models represent a modest adjustment to standard

IV models. Yet, correctly implementing the model is challenging. First, maximum-

likelihood (ML) bivariate probit algorithms in common software suites can be inaccurate

(e.g, Freedman and Sekhon 2010). Second, estimates for treatment effects are difficult to

calculate directly from standard model outputs. Quantities of interest such as the average

treatment effect (ATE) require further calculations and uncertainty estimates for these

quantities are not directly available.

2.1. Approach

We consider the problem of identifying a causal effect in the context of the potential

outcomes framework (Rubin 1974). Let y ∈ {0, 1} be a binary outcome, T ∈ {0, 1} be a

treatment variable, and xi be a vector of covariates (including a constant) for observation

i ∈ [1, 2, . . . , n]. We observe an outcome yi which is a realization of one of two potential

outcomes (yi0, yi1) corresponding to the two possible levels of treatment, (Ti0, Ti1). Thus,
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yi0 and yi1 are random variables such that

yi0 = 1(xiγ2 + ηi > 0)

yi1 = 1(β + xiγ2 + ηi > 0),
(1)

where ηi is a symmetric unobserved error term centered at zero, and 1(·) is the standard

indicator function. The average treatment effect (ATE) is then E(y1)−E(y0) ≡ ∆. Assuming

that f(·|µ) is the probability density function (PDF) for the error term η, F (·|µ) is the

cumulative density function (CDF), and µ represents any parameters defining f(·), then

∆ = F (β + xγ2|µ)− F (xγ2|µ).

Assuming that the unobserved errors are conditionally independent of the treatment,

ηi ⊥ Ti|xi, the ATE can be estimated using standard regression techniques (Rosenbaum

and Rubin 1983). However, in many settings, this assumption does not hold; some factors

may affect both the treatment assignment and the outcome. In this scenario, estimates

from standard linear models are known to be inconsistent.

To consistently estimates of ∆, we introduce a variable,1 z, that is related to T but is

independent of y conditioned on the covariates. With some additional assumptions, it

is then possible to apply methods from structural equation modeling to generate consis-

tent estimates of causal effects (Chib 2003). The basic approach is to solve a system of

simultaneous equations,

Ti = 1(x′
iγ1 + ziπ + η1i > 0)

yi = 1(x′
iγ2 + Tiβ + η2i > 0),

(2)

where (η1i, η2i)
′ ∼ f (2)(η|µ) is some bivariate PDF defined by parameters µ.

1For the sake of clarity, we restrict ourselves to the case where there is only one

instrument and one treatment of interest.
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2.2. Model specification and likelihood

Correctly estimating Model (2) will, given additional assumptions, allow us to correctly

estimate the various model parameters and thus the causal quantities of interest (Angrist,

Imbens and Rubin 1996; Chib 2003). We make four assumptions. Assumption 1 states that

the instrument has a conditional effect on the endogenous treatment, or more formally

COV(z, T |X) 6= 0. Assumption 2, commonly referred to as the exclusion restriction, states

that knowledge about the data-generating process of the instrument will not effect the

outcome except through the treatment. Assumption 3, the stable unit treatment value

assumption (SUTVA), states that the potential outcomes for each person are unrelated

to the treatment received by other observations. Finally, Assumption 4 states that the

unmeasured errors are distributed according to a bivariate normal distribution symmetric

around the vector 0 with covariance matrix Ω.2

Letting φ(2)(·) be a bivariate normal PDF and Φ(2)(·) be the CDF, we can formalize this

model by letting (η1i, η2i)
′ = (ε1i, ε2i)

′ iid∼ φ(2)(0,Ω) in Equation (2). To identify the model,

we set ω11 = ω22 = 1 and ω12 = ω21 = ρ ∈ [0, 1], which means that Ω is a correlation matrix.

The likelihood can then be expressed as:

L(y, T |x, z,γ1,γ2, β,Ω) =
∏

i∈F Φ(2)


−(xiγ1 + ziπ)

(2yi − 1)(xiγ2)

 ,Ω


×
∏

i∈G Φ(2)


 xiγ1 + ziπ

(2yi − 1)(xiγ2 + β)

 ,Ω

 ,

(3)

2Assumption 4 is stronger than the standard monotonicity assumptions required for

two stage least squares models (2SLS) (Angrist, Imbens and Rubin 1996). However, our

purpose here is not to compare the performance of Bayesian bivariate probit models with

2SLS models, but rather to contrast it with ML bivariate probit models, which also require

this assumption. We evaluate our method relative to 2SLS in Section E of the online

Appendix.
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where F is the subset where we observe Ti = 0, and G represents the subset where Ti = 1.

2.3. Bayesian estimation

The model in Equation (3) can be estimated with several possible ML routines. How-

ever, previous work by Freedman and Sekhon (2010) suggests caution.

In multidimensional problems, even the best numerical analysis routines find
spurious maxima for the likelihood function. Our models present three kinds
of problems: (1) flat spots on the log likelihood surface, (2) ill-conditioned
maxima, where the eigenvalues of the Hessian are radically different in size,
and (3) ill-conditioned saddle points with one small positive eigenvalue and
several large negative eigenvalues. (Freedman and Sekhon 2010, p 144)

Thus, we turn to a Bayesian approach for estimating this model, which sometimes of-

fers superior performance for models with multiple maxima and which can incorporate

prior structure to improve numerical performance where the likelihood is difficult to

characterize.

The Bayesian model is implemented in the Stan modeling language using no-U-

turn sampling (Hoffman and Gelman 2014). Full replication code along with additional

discussion of the model is provided in the online Appendix.

2.4. Calculating quantities of interest

To calculate the actual treatment effects of interest, we first estimate the interim quantity

∆
(ATE)
i = Φ(x′

iγ2 + β) − Φ(x′
iγ2). We evaluate this quantity at the observed value of the

covariates xi. We then calculate ∆(ATE) =
∑n

i=1 ∆
(ATE)
i /n. Crucially, calculating ∆(ATE)

for each draw from the posterior provides a posterior distribution for the ATE.

Another quantity of interest is the average effect of the treatment on the treated (ATT),

defined as ∆(ATT ) = E[y1|T = 1]− E[y0|T = 1]. We can again calculate interim value

∆
(ATT )
i =

Φ(2)


xiγ1 + ziπ

xiγ2 + β

 ,Ω

− Φ(2)


xiγ1 + ziπ

xiγ2

 ,Ω


Φ(x′

iγ1 + ziπ)
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Table 1. Parameter Values for Data Simulation

Variable Name Values considered

N 50 250 500 1000
ρ 0.25 0.5 0.75
π 0.5 1 1.5 2.0
β 0 1.0 2.0 3.0 4.0

evaluated for the observed values of xi and zi. The ATT is then
∑n

i=1 ∆
(ATT )
i /n.3

3. SIMULATION STUDY

In this section, we compare the performance of the Bayesian and ML bivariate probit

models using simulated data. Specifically, we compare the results from the Stan model

shown in the online Appendix with the biprobit command in StataSE version 14.2.4

For this study, x is a matrix of an intercept and one independent variable. Both the

independent variable in x and the instrument are drawn from standard normal distri-

butions. Using this data, we generate the treatment and outcome exactly as assumed

in Equation (2). We fix the γ parameters such that γ1 = (1.5,−1) and γ2 = (−2, 2.5).

However, we vary the correlation between the first and second stage (ρ), the number of

observations (N), the instrument strength (π), and the treatment coefficient (β). Table 1

displays the parameter values considered. For each of the 240 parameter combinations,

we simulate 500 independent data sets.

To compare the methods, we calculate the mean squared error (MSE) Each frame of

Figure 1 displays the MSE on the average treatment effect (ATE) for the ML and Bayesian

methods partitioned by sample size.5 The gray vertical bars are the difference between the

3In a Appendix we show calculations for the local average treatment effect (LATE).

This is the effect of the treatment on the subpopulation that complies with the instrument.
4We specify Gaussian priors with mean zero and standard deviation 2.5 on the struc-

tural parameters of the model. In the online Appendix we consider alternative priors.
5In section E of the Appendix we present the results for the LATE.
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Figure 1. This Figure compares the mean squared error (MSE) on the average treatment effect (ATE) for the
Bayesian and ML estimates on the simulated data sets. Gray vertical rectangles show the difference between
the two MSEs at each parameter value. The Bayesian estimator outperforms the ML estimate in terms of
the MSE across all parameter settings, and this pattern is particularly clear with small samples and weak
instruments.

MSE for each approach. The figure reveals two important patterns. First, the MSE of the

Bayesian estimator is always smaller than that of the ML estimator, even with modestly

large sample sizes and strong instruments. Second, both estimators perform better with

stronger instruments (from left to right along the x-axis) and larger sample sizes (plots

going from the top left to bottom right). However, when the instrument is weak or sample
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sizes are smaller, the relative advantage of the Bayesian estimator is greater.6

4. THE EFFECT OF EDUCATION ON VOTER TURNOUT

In this section, we compare the Bayesian and ML bivariate probit models to estimate

the causal effect of education on turnout. To address this question, Sondheimer and Green

(2010) (henceforward SG) leverage three randomized experiments aimed at stimulating

educational attainment (e.g., Heckman et al. 2010; Barnett 2010; Kahne and Bailey 1999;

Hanushek 1999): the High/Scope Perry Preschool Experiment (Perry), the I Have A

Dream program (IHAD), and the Student-Teacher Achievement Ratio (STAR) experiment.

The basic approach is to consider these experiments as encouragement studies, where

educational attainment is the causal variable of interest and the experimental assignments

are instruments. SG then match data from participants to turnout in federal elections

between 2000 and 2004, where the outcome variable is an indicator for voting in any

election in this period. The goal is to estimate the effect of educational attainment on

political participation, which may be confounded by socioeconomic status (Berinsky and

Lenz 2011).

There are two features of this data, which is displayed in Table 2, that are relevant for

our purposes. First, the sample sizes are small for the Perry (N=123) and IHAD (N=58)

experiments. Second, high school graduation rates in the STAR experiment were very

high in absolute terms across treatment conditions (90.08% in the treatment group and

84.97% in the control group), which implies a relatively weak instrument.

The ML bivariate probit results from SG are shown in the columns labeled ML in Table 3.

The columns labeled ‘‘Bayesian’’ show these estimates using the Bayesian approach. Note

that the coefficients estimated in the Bayesian models differ considerably from the ML

estimates in the second stage. While the effect of education on turnout are all positive,

6In the online Appendix, we show that this pattern holds using mean absolute error

and when instead considering 95% coverage probabilities.
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Table 2. Description of educational experiment data from Sondheimer and Green (2010)

Perry IHAD STAR

Treatment
HS Graduation 65.00% 78.95% 90.08%

Turnout 18.33% 42.11% 46.83%
N 60 19 252

Control
HS Graduation 44.44% 61.54% 84.97%

Turnout 12.70% 33.33% 42.22%
N 63 39 559

they suggest more modest effect sizes and are more likely to include zero in the 95% CI

than originally reported.

The differences between the ML and Bayesian models persist when we pool across

studies. SG construct a precision-weighted estimate of the coefficient measuring the effect

of education on turnout on the probit scale.7 This is shown on the right column of Table 3

and suggests that there is strong evidence in favor of the effect of high-school graduation

on turnout. The Bayesian models, however, only weakly support this conclusion. Figure 2

displays the posterior estimates for the ATEs (left panel) and ATT (right panel) for each

study, as well as the pooled posterior density.8 The posterior mean pooled ATE is 0.22,

which suggests that the causal effect of high school graduation on voting in a federal elec-

tion is a 22% increase. However, there is significant uncertainty. The posterior probability

that the pooled ATE is less than zero, Pr(∆(ATE) ≤ 0), is approximately 0.14. The right

panel shows similar estimates for the effect of the treatment on the treated.

7For the sake of comparison, we create ‘‘pooled’’ estimates for this coefficient using

the same method for the Bayesian estimates. However, our preferred method of pooling

estimates is shown below.
8Pooled estimates are calculated by taking a sample-size weighted average from each

draw from the posterior.
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Table 3. Bivariate probit regression and Bayesian IV results for the downstream effects of educational
attainment on turnout

Perry IHAD STAR Pooled
ML Bayesian ML Bayesian ML Bayesian ML Bayesian

HS Graduation Level
Intercept -0.14 -0.13 0.29 0.31 1.04 1.04

( 0.16 ) ( 0.16 ) ( 0.19 ) ( 0.2 ) ( 0.07 ) ( 0.07 )
Treatment 0.53 0.51 0.51 0.5 0.25 0.25

( 0.22 ) ( 0.23 ) ( 0.76 ) ( 0.37 ) ( 0.13 ) ( 0.13 )
Voter Turnout Level

Intercept -1.6 -1.33 -1.01 -0.39 -1.85 -0.84
( 0.48 ) ( 0.37 ) ( 0.72 ) ( 0.48 ) ( 0.82 ) ( 0.61 )

HS Graduation 1.08 0.58 1.05 0.07 1.95 0.79 1.35 0.52
( 0.83 ) ( 0.61 ) ( 1.03 ) ( 0.68 ) ( 0.92 ) ( 0.69 ) ( 0.54 ) ( 0.36 )

N 123 123 58 123 811 123 992 992

ρ -0.04 -0.07 -0.12
( 0.35 ) ( 0.38 ) ( 0.39 )

ML columns replicate Table 5 in Sondheimer and Green (2010). Coefficients are ML estimates and Bayesian
posterior means. In parenthesis, we report bootstrapped standard errors for ML estimates and posterior
standard deviations for Bayesian estimates. Pooled estimates are calculated by creating precision weighted
coefficients.

5. CONCLUSION

In this note, we argue that a Bayesian approach to estimating bivariate probit instru-

mental variables is superior to standard maximum likelihood routines. Broadly speaking,

Bayesian and ML approaches to inference provide virtually identical parameter estimates.

However, in the case of bivariate probit instrumental variable models, this appears not to

be the case. First, numerical issues with the likelihood surface appear to prevent standard

routines from locating the true ML estimator (Freedman and Sekhon 2010). The Bayesian

model, however, is better able to recover the true model parameters in many settings.

Specifically, our simulation study showed that in settings more typical to actual applied

research in the social sciences—where sample sizes are often modest and instruments are

often quite weak—the Bayesian approach is more likely to provide accurate inferences.

Second, in an IV setting, the specific parameter values from the bivariate probit model

are not of direct interest, making interpretation difficult. The Bayesian approach makes it

simple to easily calculate key causal quantities of interest along with appropriate measures
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Figure 2. Bayesian treatment effect estimates for the effect of education on voter turnout. These posterior
densities of the treatment effects for each data set were obtained by calculating the ATE and ATT at each
iteration of the MCMC algorithm. Based on the pooled posterior density for each, P(ATE≤ 0) = 0.14 and
P(ATT≤ 0) = 0.15. The pooled estimates are an average of the estimated ATE and ATT at each MCMC draw
weighted by sample size.

of uncertainty. We illustrate the advantage of this flexibility by re-estimating the effect of

educational attainment and voter turnout (Sondheimer and Green 2010).

In all, the analyses above illustrate how the Bayesian approach can provide more

reliable and accurate estimates of treatment effects, and are more flexible for calculating

treatment effects in the presence of binary outcomes than traditional ML approaches.

Before concluding, however, it is worth noting one important limitation. Specifically,

analysts should realize that any bivariate probit model requires more restrictive assump-

tions for estimating causal quantities than alternative approaches such as two-staged least

squares (2SLS). By assuming the joint normality of the error distribution, bivariate probit

models are less agnostic than 2SLS, which assumes only monotonicity.

With that said, one of the advantages of adopting the Bayesian framework is that it is

possible to extend the model in a variety of ways, leveraging the extensive array of tools

available in the Bayesian literature, to address these concerns. Chib and Greenberg (2007)

provide a variant of the model with fewer assumptions, and Chib, Greenberg and Jeliazkov

(2009) extend this further to allow for non-random sample selection. Although far more
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flexible, however, these models also make assumptions about the joint distribution of

the treatment and the outcome that may not always be appropriate. Additional work is

required to extend this modeling framework to accommodate flexible joint distributions.

Nonetheless, bivariate probit models are still routinely estimated in the social sciences,

and the Bayesian implementation described here offers significant practical advantages

over the standard ML techniques now dominant in the literature. With large samples and

strong instruments, all approaches will provide nearly identical answers. Yet, researchers

are seldom blessed with this kind of data. Under more realistic circumstances with finite

samples and weak instruments, the Bayesian implementation we describe promises to aid

researchers in making more accurate, efficient, and interpretable estimates of treatment

effects.
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